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Abstract. A scheme for calculating the complex self-energy of electrons moving in a real
metal surface region is proposed. The approach is based on a quantum formula that uses a
Drude–Lindhard model bulk dielectric functionε(q, ω) for describing free-electron metal. The
experimental energy-loss function Im{−1/ε(ω)} is fitted to a finite sum of the modelled energy-
loss functions and a corresponding expression for the complex self-energy is derived. Calculated
differential inelastic scattering cross-section results are given for Mg, Ag and Au to show the
surface and bulk excitation modes in these metals. Thez-dependent inelastic mean free path
and stopping power near a surface region are also obtained. The approach provides a practical
scheme to be used in quantitative surface electron spectroscopy.

1. Introduction

A quantitative description of the energy spectra of electrons emitted from a solid surface
requires a full knowledge of the electron inelastic scattering processes made up of surface
excitations as well as bulk excitations of solid electrons. More specifically, one needs
to know the total scattering cross-section and the differential cross-section in terms of
the momentum transfer and loss energy. In the preceding paper [1], a formalism for the
electron self-energy was presented for an electron penetrating through a surface from the
interior of a solid to the vacuum. The inelastic cross-section depending on the distance
from the surface and the velocity vector can be obtained from the imaginary part of the
self-energy for any metal of known dielectric functionε(q, ω). An expression for the
self-energy using the Drude–Lindhard model dielectric function was derived for a free-
electron material. Unfortunately, no exact dependence ofε(q, ω) on momentum transfer is
known either theoretically and experimentally for a variety of materials of practical interest,
including noble metals and transition metals. To get the necessary information concerning
the electron inelastic scattering in a real metal, one has to use the experimental values of
the optical dielectric functionε(ω) and extrapolate these data from the optical limit to other
momentum transfers.

To do this, Ritchie and Howie [2] have suggested a method for obtaining an approximate
energy-loss function for arbitraryq-values from an optical energy-loss function. In brief, a
procedure for fitting to the experimental data is carried out to obtain the parameters involved
in a sum of Drude–Lindhard model energy-loss functions atq = 0. Further extending this to
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finite q-values by assuming a plasmon dispersion leads to the required Im{−1/ε(q, ω)}. The
spirit of this method for obtaining theq-dependent dielectric function has been employed
by many authors [3–7] since then in their theories of electron inelastic scattering.

In this paper, a scheme for the calculation of the electron self-energy in the surface
region of a real metal is developed by combining the above-mentioned formalism with a
method using optical data (section 2). Numerical calculations of the differential energy-loss
cross-section, inelastic mean free path (IMFP) and stopping power have been performed for
several metals. Their dependence on the kinetic energy, the distance from a surface and the
take-off angle have also been presented (section 3).

2. Theory

Let us decompose a bulk energy-loss function intoN terms of the Drude–Lindhard model
energy-loss function:

Im

{ −1

ε(q, ω)

}
=

N∑
i=1

ai Im

{ −1

ε(q, ω;ωpi , γi)
}

(1)

where the 3N parametersai , γi andωpi are respectively the oscillator strength, energy and
width of the ith oscillator, which are determined from an experimental optical energy-loss
function using a fitting procedure:

Im
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ε(ω)

}
=
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i=1

ai Im

{ −1

ε(0, ω;ωpi , γi)
}
. (2)

This implies that core excitations in a solid are treated as similar to free electrons, in the
spirit of a statistical model [8], and described by a Drude–Lindhard dielectric function for
a plasmon pole with finite damping:

εi ≡ ε(q, ω;ωpi , γi) = 1+ ω2
pi

β2q2+ q4/4− ω(ω + iγi)
(3)

while the unnecessary constantωg in equation (39) of [1] is discarded.
From the Kramers–Kronig relation
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we readily get

1

ε(q, ω)
− 1=

N∑
i=1

ai

(
1

εi
− 1

)
. (5)

The bulk self-energy term (equation (22) of [1]) is therefore a linear combination of
each bulk component withεi :

6b[ε] = 2

(2π)2

∫
dq

q2

∫ ∞
0

dω

(
1

ε
− 1

)
δ(ω − q · v) =

N∑
i=1

ai6
b[εi ]. (6)

But the surface terms are not such simple linear combinations. Using equation (5), we find
for the surface dielectric function

1

εs(q‖, ω)
− 2=

N∑
i=1

ai

{
1

εsi (q‖, ω)
− 2

}
(7)
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Table 1. A comparison of the�p-values, where�2
p equals: 4πne2/m (theoretical definition);

2π−1
∫∞

0 ω Im {−1/ε(ω)} dω (the f -sum rule obtained from an optical energy-loss function);∑N
i=1 aiω

2
pi

(as fitted by equation (2) and a sum rule).

�p (eV)

Theory Sum rule Fitted N

Mg 26.7 28.7 29.1 44
Si 31.1 29.6 30.2 31
Ag 61.6 63.1 64.5 44
Au 80.1 76.3 78.4 50

Figure 1. A comparison of the optical bulk energy-loss function Im{−1/ε(ω)} derived by means
of a fitting (solid line) to experimental data (dotted line) for silver. The chain line in the left-hand
inset is the optical surface energy-loss function Im{−1/[1+ ε(ω)]}.

where

1

εsi
= 1+ q‖

π

∫ ∞
−∞

dq⊥
q2εi

(8)

and the self-energy term forz < 0 due to the image charge (equation (23) of [1]) is

6 i [ε] = − 2i

(2π)3

∫
dq‖

∫ ∞
0

dω
∫ ∞
−∞

dq⊥
q2ε

(
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)
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(
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where6 i [1] is

6 i [ε = 1] = − i

2π

∫ ∞
0

dω
∫ ∞

0
dq‖ {P−2 [1] − P+2 [1]}. (10)
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Since

P±n [1] = 1

2π

∫ 2π

0
dϕ
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π

∫ ∞
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dq⊥
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= 1

2π
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equation (10) becomes

6 i [1] = − 1

π

∫ ∞
0

dω
∫ ∞

0
dq‖ e2q‖z Im{Q0(iq‖)}. (12)

Similarly, on findingH [1] = exp(q‖z), the self-energy term forz < 0 due to surface
charges (equation (24) of [1]) reads
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(13)

The self-energy terms forz > 0 (equations (28) and (29) of [1]) are
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. (15)

3. Results and discussion

In general, an optical energy-loss function extends over a wide photon energy range from 100

to 103 eV. The lower-energy region exhibits a complex structure due to interband transitions.
Inner-shell ionization edges can be observed at high energies. For the calculation of the
IMFP of keV electrons, the whole photon energy range should be considered. To ensure
the accuracy of the fitting to the optical energy-loss function, a sufficiently large number
of Drude–Lindhard terms is therefore necessary. It is obvious that the set of parameters is
not unique. To reduce the computing work, we allow a negative value ofai . This is an
efficient way of accelerating the convergence at an inner-shell edge by adding more terms.
Meanwhile, thef -sum rule can still be obeyed. Table 1 compares the�p-values obtained
by a fitting procedure using equation (2) with theoretical and bulkf -sum-rule values for
several elements. The input optical data were taken from a handbook [9] for Au, Ag and
Si, and from a compilation [10] for Mg.

A SIMPLEX optimizing routine [11], which enables a fast convergence to the required
accuracy to be achieved, was used to find over a hundred parameters involved in several
tens of Drude–Lindhard terms. Figure 1 shows an example of the fitting result for Ag. The
insets are magnifications at a surface plasmon loss peak and an M4,5 edge.
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(a)

(b)

Figure 2. A perspective view of the inelastic scattering differential cross-section as a function
of ω andz for Au. (a) A wide energy range including interband transitions. (b) A low-energy
region showing a surface peak.

In the present work, we have chosenβ =
√

2
3EF in equation (3) so that the dispersion is

that of bulk plasmon in a free-electron gas. This differs from a simpler dispersion equation
used in [1]. Because the experimental investigations of the dispersion were mainly carried
out to study plasmons, it is difficult to assess how accurately these dispersion relations
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(a)

(b)

Figure 3. A perspective view of the inelastic scattering differential cross-section as a function
of ω andz for Ag. (a) A wide energy range including interband transitions; the unseen region
whereω < 4.2 eV is magnified in (b). The arrow indicates a bulk feature.

describe interband transitions in transition and noble metals. The dispersion coefficient
affects the shape of the wave-vector-dependent dielectric function and, hence, slightly affects
the value of the self-energy. For bulk terms, it has been shown that the resultant differences
in IMFP and stopping power caused by using different values ofβ are not significant [12].

Only the calculation result for the imaginary part of the self-energy will be presented
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below. Figure 2 shows the varying of the inelastic scattering differential cross-section withz

for Au. Roughly speaking, the overall shape of the cross-section transforms from the shape
of the bulk energy-loss function Im{−1/ε(ω)} to that of the surface energy-loss function
Im{−1/[1+ε(ω)]}, asz increases to 0−. It is clear that certain peak heights at lower energy-
loss positions increase considerably asz→ 0−, reach maximum values atz = 0 and then
decrease slowly asz→∞. The peak positions slightly shift to the lower-energy side withz

due to the intensity reduction on the higher-energy side. This slow damping behaviour with
z in the vacuum region indicates that those peaks may reasonably be identified as dominant
surface modes in a noble metal. Figure 2(b) is an enlargement around the lowest surface
peak at 2.6 eV, which has been observed in a reflection electron energy-loss spectroscopy
(REELS) experiment [13].

Figure 3 demonstrates a similar case for another noble metal, Ag. Note that the shoulder
at 3.86 eV in figure 3(b) is a bulk feature, corresponding to the sharp peak at 3.8 eV in the
bulk energy-loss function shown by figure 1. The dominant loss peak at 3.72 eV certainly has
a surface loss character, corresponding to the 3.7 eV peak in the surface energy-loss function.
The experimental values of these bulk and surface plasmon energies are respectively 3.78 eV
and 3.63 eV [14]. Experimental REELS spectra [13] taken at beam energies of 1.5 keV and
200 eV have peaks at respectively 3.8 eV and 3.6 eV, which were assigned to combinations
of the surface plasmon excitation and bulk plasmon excitation. However, the details of how
each mode contributes to the observed loss peak were unknown. The present theory clearly
reveals that surface plasmon excitation is the main characteristic in REELS experiments
on silver. However, a quantitative analysis should be done with a Monte Carlo simulation
because the loss peak intensity depends considerably on the experiment conditions.

Figures 4 and 5 show the case of two further free-electron-like materials, Si and Mg.
They have plasmon loss peaks at lower loss energies. But we will mainly note the inner-
shell edge in figures 4(b) and 5(b). The L2,3 edge varies almost constantly withz from
the interior of the solid to the surface. Whenz increases from the surface it quickly drops
down. This is quite reasonable because a scattering electron far from the surface can hardly
interact with core electrons in an atom.

We can compare the present result with our previous calculation [15]. With aδ-function-
type modelling energy-loss function, the surface terms become oscillating inz andω in the
moderate-z region and can hardly approach zero asz → −∞. This is probably due to
a convergence problem in the limit of an infinitely small damping constant. The present
calculation overcomes this shortcoming as well as significantly reducing the computation
time: a summation over finite terms replaces an integration that requires a fine grid spacing
for numerical calculation.

Figure 6 shows the kinetic energy dependence of the differential cross-section. For
z < 0 and in the surface region, by comparing figure 6(a) with figure 6(b), we can see
that the surface effect increases the energy-loss probability and stopping power mainly at
low E- andω-values. Forz > 0, there is the same tendency. However,p(ω) becomes
physically meaningless—negative, whenω/E → 1 with decreasingE. Obviously, this is
due to the fast-electron approximation made in the theory [1]. These negative values must
be abandoned in the calculation of the IMFP,λ = (Im 6̄)−1, and the electron stopping
power. Note that the scaled self-energy is defined by equation (64) of [1].

The z-dependence of the IMFP is shown in figure 7. At lower energies, the total
scattering probability increases near the surface region, while at high energies, the surface
effect is very small for an electron before it leaves the surface. The damping of the inverse
IMFP with z in the vacuum region seems to be heavier than that predicted by a semi-
classical theory [16]. Note that, in order to retain the same extent of approximation for the
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(a)

(b)

Figure 4. A perspective view of the inelastic scattering differential cross-section as a function
of ω andz for Si. (a) The plasmon energy-loss region. (b) The L2,3-edge region.

bulk term as for the surface terms, we have usedδ(ω − q · v) in equation (6) instead of
δ(ω − q · v + 1

2q
2). Therefore, the integration limits ofq are taken asq+ = ∞ andq− =

ω/v in equation (61) of [1] instead ofq± =
√

2E ± √2(E − ω). This leads to a smaller
bulk IMFP compared with that obtained by calculation by Tanumaet al [17].
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(a)

(b)

Figure 5. A perspective view of the inelastic scattering differential cross-section as a function
of ω andz for Mg. (a) The plasmon energy-loss region. (b) The L2,3-edge region.

Figure 8 illustrates the energy dependency of the space-varying inverse IMFP and
stopping power:

−dE/dx =
∫ E−EF

0
ω Im 6̄(z|ω) dω. (16)

Each of these has shown a maximum at around a hundred electron volts. The stopping power
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(a)

(b)

Figure 6. A perspective view of the inelastic scattering differential cross-section as a function
of ω andE for Au. A cut-off is made atω = E − EF. (a) The totalp(ω) for z < 0. (b) The
bulk termpb(ω). (c) The totalp(ω) for z > 0.

has almost no maximum in the surface region, which is not true for the inverse IMFP. This
is because, although the scattering probability increases at the surface, the energy-loss value
is decreased by the surface modes. Figure 9 presents the angular dependence of the IMFP.
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(c)

Figure 6. (Continued)

Figure 7. The z-dependency of the inverse inelastic mean free path.

The inverse IMFP increases smoothly with the take-off angleθ for z < 0 and the opposite
tendency is found forz > 0.

4. Conclusions

In conclusion, we have derived an expression for the self-energy of an electron interacting
with a real metal surface. The formulation is based on fitting an experimental energy-
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(a)

(b)

Figure 8. A perspective view of (a) the inverse inelastic mean free path and (b) the stopping
power as functions ofz andE.

loss function Im{−1/ε(ω)} with a sum of Drude–Lindhard model energy-loss functions.
Numerical calculations have been performed for several metals. Surface excitation modes
in these metals can be understood on the basis of a space-varying differential energy-loss
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Figure 9. The dependence on the take-off angle of the inverse inelastic mean free path.

cross-section. The result of the calculation is reasonable at high energies where the Born
approximation is valid.
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